INTRODUCTION À D3.JS

ATELIER THÉMATIQUE EN VISUALISATION DE DONNÉES

Antoine Béland

9 octobre 2018

QUI SUIS-JE?

- Baccalauréat en génie logiciel
- Maîtrise recherche en génie informatique (en cours)
- Spécialisation en visualisation de données
- Collaboration avec « Le Devoir »

QUI ÊTES-VOUS?

- Expérience en programmation?
- Expérience en JavaScript?
- Expérience avec D3.js?

OBJECTIFS DES ATELIERS PRATIQUES

- 1. Se familiariser avec les fonctionnalités de D3.js
- 2. Connaître les possibilités qu'offre D3.js
- 3. Être en mesure de réaliser une visualisation de base avec D3.js

PLAN DE L'APRÈS-MIDI

- 1. Qu'est-ce que D3.js?
- 2. Exemples d'application
- 3. Introduction aux langages web
- 4. Introduction aux fonctionnalités de D3.js
- 5. Mise en pratique

QU'EST-CE QUE D3.JS?

- Bibliothèque JavaScript permettant de réaliser des visualisations sur le web
- Version initiale en 2011, développée par Mike Bostock
- Fournie une panoplie de fonctions utiles pour faciliter la création d'une visualisation
- Permet de personnaliser grandement le rendu

Pour l'atelier, nous utiliserons la version 5 de D3.js.

EXEMPLES D'APPLICATION

EXEMPLE 1: CARTE PROPORTIONNELLE

Node Link	Circle Layout	T	Tree Map Layout		Stacked Area Layout		e Iderer	Da	Color Paleti	e	Fibor Heap	Sparse Matrix	S	t Interpola	Interpolator		T	ange if		iff		gte		lte			
Tree Layout		L					Arrow		0:	01				Matrix Interpol	Color Interpol	Rectanç Interpol	1	mul	gt sub		sub		neq	lt			
Radial	Directed	T	Tree Layout		Layout		Туре	Pal	Size Paleti	Snape Palett		Dense				ct Numbe oc Interpc		div	eq		add		mod	is	isa		
Layout	Layout	B	Bundled		Pie						Неар	Watrix		A	Ohiod				- 4						-		
Circle	_	R	Edge Router		Layout		I Rendere	Pa le sh			Node	1		Interpola	1 Interp		fn nc	fn	variance		where		sele	ct	distinct	t	
Packing Layout	Axis Layout	lr T	Indented Tree Layout		Random Layout				Palet	te		Matrix	Matrix					not									
Label		L							Chan			Displays		Point Interpol	at			stddev	or			average	e min		max		
Labele	Labeler		Distort	i Tree Filter	Filter	List	Spri	te	опар	5 N	nauis	Displays			Date Interpolator				ord	derby	sum				_		
	Stacked					Sca Bind	ale Tree din Builde	Geo	Geor	Arrays	State	e Pro	nort	Easing	Tr	ansition	- 3	xor	yr update		ie cour		ount				
	Area _abeler	Fich		Cran					Geoi	Allays	Olai	5 FI0	Troporty	y				Expression	Comparise		mparisor	n Date					
Propert	Color Size Enco Enco	Disto	rtion	Dista	ance r									Tween Function Sequenc	Seque	en Paralle	lel	String Util	Arithmetic			Match		Composite Expression			
		Oper List	ator Ope Swi	erator tch	Sort Operator		Tree			Dates	Filte	r I Value	l Value Proxy					Expression Iterator	Fn		Binar Expr		<i>i</i> ssion	lf	lf		
Encode						Dat	a		Colo						∉ Tran	l Pa	Paus	IsA	Range		Хо	r	And		Or		
Encode	Shane	Oper	ator Ope	erator	 Operator	Opi	Edge				Orie	Predicate		Schedul	Ever	Sche		Variance	Not		Dis	stinct		Minimu	ım Su	ım	
	Encoder	OCQU	Jequence		operator		Sprite			Sort	Chio	1			e				Literal		Av	erage					
Tooltip	Pan Cont	rol	Drag		A) Cartes		Data					Evalua	lable				A	Aggregate Expression	Variable		Ma	Maximum		Count			
Contro	Contrc		Control		Axes		Event		Max	Sho	ortest H	dierarchical		GraphML	JSO	JSON Converter		Data	Data			N	Sim	nulation	Text		
	Click		Anchor Control		Axes	Axi Lat	Selectio Event	Min Cut	Min Cut	ra	115 0			Conventer	I			Data D		Data	Force				Oprite		
Select	Hover	rol	Contrc I	1					1		A Constant	Agglor Comm Cluste Struct		Delimited Text	Data	Data		Schema		Table		Particle S	Spring Force	Gravity Force	Dirty Sprite	Dirty Sprite	
Contrc	Contrc Expa	ind	C	ontrc	Andre		Tooltip Event		Link Distai	nce	Span Free			Converter	CON	enters		Field		Set					Rect	Line	
	Control				Grid		Visualiz	zation Botu		oonno				Time Scale	Sca	ale		Quantile Scale		l Scale		Spring	Drag	l Farra	Sprite	e Spri	
							Event		Centr	ality	P	Merge			Ord	Ordinal		0		Man			Force	Force			

EXEMPLE 2: DIAGRAMME DE FLUX

Rechercher un endroit...

EXEMPLE 3: CHOROPLÈTHE

INTRODUCTION AUX LANGAGES WEB

HTML

- Langage de balisage permettant de définir la structure d'une page web
- Chacun des éléments est représenté par une balise d'un certain type (h1, p, etc.)
- Il est possible d'ajouter des attributs sur les balises (id, class, etc.)

HTML — EXEMPLE D'UNE PAGE

<!DOCTYPE html> <html> <body> <h1>Le titre de ma page</h1> Un paragraphe associé à ma page. </body> </html>

HTML – BALISE SVG

- Permet de dessiner des éléments vectoriels sur une page web
- Balise très importante pour D3.js
- Non destructif aux agrandissements

HTML — MATRICIEL VS SVG

C Différence conceptuelle entre les images matricielles et vectorielles · Yug, 2011 | CC BY-SA 2.5

HTML — ÉLÉMENTS VECTORIELLES

- **circle** (attributs: cx, cy, r)
- **ellipse** (attributs: cx, cy, rx, ry)
- polygon (attribut: points)
- rect (attributs: x, y, width, height)
- **text** (attributs: x, y)
- etc.

HTML — EXEMPLE D'UNE BALISE SVG

```
<svg width="300" height="200">
    <!-- Un rectangle -->
    <rect width="100" height="80" x="0" y="70" fill="green"/>
    <!-- Une ligne -->
    <line x1="5" y1="5" x2="250" y2="95" stroke="red"/>
    <!-- Un cercle -->
    <circle cx="90" cy="80" r="50" fill="blue"/>
    <!-- Un texte -->
    <text x="180" y="60">Un texte</text>
</svg>
```


HTML – POUR EN SAVOIR EN PLUS

- Tutoriel sur le langage HTML
- Tutoriel sur les images SVG
- Référence sur les balises HTML
- Référence sur les éléments SVG

CSS

- Langage permettant de décrire la présentation d'un document HTML
- Applique un style particulier en utilisant des règles et des sélecteurs

CSS — RÈGLES

Durant l'atelier, nous utiliserons principalement:

- **fill**: couleur de remplissage
- **height**: hauteur d'un élément
- **stroke**: couleur de la bordure
- stroke-width: taille de la bordure
- width: largeur d'un élément

CSS — SÉLECTEURS

Pour appliquer un style, il faut utiliser un sélecteur:

- **element**: applique un style à tous les éléments sélectionnés
- **.classe**: applique un style à tous les éléments ayant la classe sélectionnée
- **#identifiant**: applique un style à l'élément ayant l'identifiant sélectionné

CSS — EXEMPLE

```
line {
  stroke: green;
  stroke-width: 4px;
}
.rouge {
  fill: red;
}
#rectangle {
 fill: yellow;
  stroke: blue;
  stroke-width: 5px;
}
```


CSS — POUR EN SAVOIR EN PLUS

• Tutoriel sur le langage CSS

JAVASCRIPT

- Langage de programmation de script faiblement typé
- Permet de manipuler une page web, soit le DOM (*Document Object Model*)
- Permet l'interaction avec l'utilisateur via des évènements

JAVASCRIPT — SYNTAXE

```
// Déclaration d'une variable
var variable = 1;
var liste = [ 1, 2, 3, 4, 5 ]; // Déclaration d'une liste
var obj = \{
                               // Déclaration d'un objet
 prenom: 'Antoine',
 nom: 'Béland'
};
function fct1() { /* ... */ } // Déclaration d'une fonction
const fct2 = () => \{\}
                             // Déclaration d'une fonction
                            // Condition
if (variable === 1) {
 console.log('OUI');
```


JAVASCRIPT — TRUCS ET ASTUCES

- Utiliser la console web pour votre débogage (console.log)
- Utiliser l'inspecteur du DOM du navigateur

JAVASCRIPT — POUR EN SAVOIR PLUS

- Tutoriel sur le langage JavaScript
- Guide sur la manipulation de tableaux en JavaScript

INTRODUCTION AUX FONCTIONNALITÉS DE D3.JS

D3.JS – À SAVOIR

- L'appel aux fonctions de D3.js commence toujours par l'appel à l'objet d3
- Il est possible d'effectuer un chainage de fonctions:

```
d3.fonction1()
   .fonction2()
   .fonction3();
```

D3.JS – SÉLECTION D'ÉLÉMENTS

- Élément fondamental de la bibliothèque
- Permet de sélectionner un ou plusieurs éléments dans le document HTML
- On utilise la fonction d3.select ou la fonction d3.selectAll
- Les fonctions de sélection prennent en paramètre un sélecteur CSS (élément, classe ou identifiant)

D3.JS – MODIFICATION D'UNE PROPRIÉTÉ

- Une fois une sélection effectuée, il est possible de modifier des propriétés sur les éléments
- On utilise la fonction attr pour modifier la valeur d'un attribut
- On utilise la fonction style pour modifier un élément de style

D3.JS — EXEMPLE (SÉLECTION SIMPLE)

```
d3.select('line')
.attr('x1', 50) // Modification de la position X
.attr('y1', 150) // Modification de la position Y
.style('stroke', 'purple'); // Modification de la couleur
```


D3.JS — EXEMPLE (SÉLECTION MULTIPLE)

d3.selectAll('.rouge') .style('fill', 'gray'); // Modification de la couleur

D3.JS – CRÉATION D'UN ÉLÉMENT

- Une fois une sélection effectuée, il est possible d'ajouter de nouveaux éléments
- On utilise la fonction append pour créer un nouvel élément dans l'élément sélectionné

D3.JS – EXEMPLE (CRÉATION)

```
d3.select('svg')
.append('rect') // Création d'un rectangle
.attr('x', 10)
.attr('y', 10)
.attr('width', 50)
.attr('height', 50)
.style('fill', 'red');
```


D3.JS – ASSOCIATION DE DONNÉES

- L'association de données (*data binding*) est un autre concept fondamental à comprendre
- Permet de lier des données aux éléments d'une sélection
- On utilise la fonction data sur une sélection multiple pour y associer un tableau de données

D3.JS – ASSOCIATION DE DONNÉES

D3.JS – ASSOCIATION DE DONNÉES

```
const svg = d3.select('svg'); // Élément de base
svg.selectAll('rect') // Sélection multiple
.data([ 15, 8, 42, 4 ]) // Association des données
.enter() // Doit créer de nouveaux élém
.append('rect'); // Création d'un rectangle
.attr('width', d => d); // Utilise les données courant
```

- La fonction selectAll peut être vue comme une boucle qui utilise les données de data
- Pour chacun des éléments à créer, les données courantes sont spécifiées (d)

D3.JS — EXEMPLE (ASSOCIATION)

D3.JS – ÉVÈNEMENTS

- Lorsqu'un élément est sélectionné, il est possible de lui associer des évènements.
- On utilise la fonction on pour y associer un évènement particulier

D3.JS – ÉVÈNEMENTS

- **click**: survient lorsque l'élément est cliqué
- mouseenter: survient lorsque la souris vient de commencer à survolé l'élément
- mouseleave: survient lorsque la souris vient de finir de survoler l'élément
- etc.

D3.JS – EXEMPLE (ÉVÈNEMENTS)

```
const colors = [ 'yellow', 'blue', 'green' ];
d3.select('svg')
  .selectAll('rect')
  .data([ 100, 50, 75 ])
  .enter()
  .append('rect')
  .attr('x', (d, i) => i * 50)
  .attr('y', d => 100 - d)
  .attr('width', 50)
  .attr('height', d => d)
  .style('fill', 'red')
  .on('click', (d, i, elements) => {
    d3.select(elements[i]).style('fill', colors[i]);
  });
```


MISE EN PRATIQUE

MISE EN PRATIQUE

 Réaliser un bar chart horizontal à partir des données sur le nombre de députés élus par parti

Québec 2018

MISE EN PRATIQUE — DIRECTIVES

- La longueur maximale d'une barre doit être de **300 px** (si 100% des députés élus)
- La hauteur de chacune des barres doit être de **50 px**
- Un espacement de 5 px doit être présent entre les barres
- Une ligne pointillée doit indiquer une majorité

MISE EN PRATIQUE

- Pour débuter, téléchargez le dossier ZIP contenant le code de départ pour l'exercice
- Complétez, par la suite, le fichier script.js

